28 research outputs found

    Uso del programa simapro para evaluar coagulantes naturales en el tratamiento de aguas

    Get PDF
    El Análisis del Ciclo de Vida (ACV) es uno de los modelos cuantitativos de mayor uso en las empresas para la evaluación del impacto ambiental de diversos procesos industriales. El presente trabajo consistió en realizar el ACV del proceso de coagulación-floculación en aguas residuales mediante el uso del programa SimaPro, en la que se analizaron 195 datos generados del proceso de tratamiento de aguas residuales con distintos coagulantes (Ecotan Bio 90D, 100 y G-150) y diferentes parámetros del proceso: dosis de coagulante 1 a 6 mL, velocidad de agitación de 50 a 100 rpm, tiempo de agitación de 30 a 120 s y temperatura de tratamiento de 10 a 20 °C. Los resultados del programa SimaPro muestran un impacto ambiental prácticamente nulo con el Ecotan Bio 90D y 100 en la generación de Gases de Efecto Invernadero, acidificación/eutrofización, uso de suelo y recursos extraíbles

    Adsorptive of Nickel in Wastewater by Olive Stone Waste: Optimization through Multi-Response Surface Methodology Using Desirability Functions

    No full text
    Pollution from industrial wastewater has the greatest impact on the environment due to the wide variety of wastes and materials that water can contain. These include heavy metals. Some of the technologies that are used to remove heavy metals from industrial effluents are inadequate, because they cannot reduce their concentration of the former to below the discharge limits. Biosorption technology has demonstrated its potential in recent years as an alternative for this type of application. This paper examines the biosorption process for the removal of nickel ions that are present in wastewater using olive stone waste as the biosorbent. Kinetic studies were conducted to investigate the biosorbent dosage, pH of the solution, and stirring speed. These are input variables that are frequently used to determine the efficiency of the adsorption process. This paper describes an effort to identify regression models, in which the biosorption process variables are related to the process output (i.e., the removal efficiency). It uses the Response Surface Method (RSM) and it is based on Box Benken Design experiments (BBD), in which olive stones serves as the biosorbent. Several scenarios of biosorption were proposed and demonstrated by use of the Multi-Response Surface (MRS) and desirability functions. The optimum conditions that were necessary to remove nickel when the dosage of biosorbent was the minimum (0.553 g/L) were determined to be a stirring speed of 199.234 rpm and a pH of 6.369. The maximum removal of nickel under optimized conditions was 61.73%. Therefore, the olive stone waste that was investigated has the potential to provide an inexpensive biosorbent material for use in recovering the water that the nickel has contaminated. The experimental results agree closely with what the regression models have provided. This confirms the use of MRS since this technique and enables satisfactory predictions with use of the least possible amount of experimental data

    Determination of water depth in ports using satellite data based on machine learning algorithms

    No full text
    One of the fundamental maintenance tasks of ports is the periodic dredging of them. This is necessary to guarantee a minimum draft that will enable ships to access ports safely. The determination of bathymetries is the instrument that determines the need for dredging and permits an analysis of the behavior of the port bottom over time, in order to achieve adequate water depth. Satellite data processing to predict environmental parameters is used increasingly. Based on satellite data and using different machine learning algorithm techniques, this study has sought to estimate the seabed in ports, taking into account the fact that the port areas are strongly anthropized areas. The algorithms that were used were Support Vector Machine (SVM), Random Forest (RF) and the Multi-Adaptive Regression Splines (MARS). The study was carried out in the ports of Candás and Luarca in the Principality of Asturias. In order to validate the results obtained, data was acquired in situ by using a single beam provided. The results show that this type of methodology can be used to estimate coastal bathymetry. However, when deciding which system was best, priority was given to simplicity and robustness. The results of the SVM and RF algorithms outperform those of the MARS. RF performs better in Candás with a mean absolute error (MAE) of 0.27 cm, whereas SVM performs better in Luarca with a mean absolute error of 0.37 cm. It is suggested that this approach is suitable as a simpler and more cost-effective rough resolution alternative, for estimating the depth of turbid water in ports, than single-beam sonar, which is labor-intensive and polluting

    Effecting Partial Elimination of Isocyanuric Acid from Swimming Pool Water Systems

    No full text
    It is essential to disinfect the water in swimming pools in order to deactivate pathogenic microorganisms. Chlorination of swimming pool water provides rapid and long-lasting disinfection, but leads to the formation of potentially toxic compounds, including isocyanuric acid, that are used to stabilize chlorine in pool water. Hygiene and health guidelines require an isocyanuric acid concentration in swimming pools of 25 to 75 ppm and that there be no level in excess of 100 ppm. This paper provides a new method to partially remove isocyanuric acid from the water of swimming pool systems with the use of melamine-based reagents. A melamine-photometry process stabilizes the isocyanuric acid. The melamine-based reagent that is added to the raw water reacts with the isocyanuric acid and forms a precipitated salt. The reaction also creates turbidity that is proportional to the isocyanuric acid concentration in the water. It was noted in this study that the optimum functioning range of melamine doses in the raw water was 0.04 to 0.06 g/L and that the reduction of isocyanuric acid in raw water increased as the dose of melamine was increased. Thus, it is necessary to obtain an estimate of the dose of melamine that is necessary to reduce the isocyanuric acid in the water without needing to add fresh water from the network to dilute it. Finally, it can be stated that eliminating isocyanuric acid that has accumulated in a pool’s water by treatment with melamine provides an efficient process, as it eliminates the amount of isocyanuric acid that is necessary to conform to the human health criteria of the European Union Directive 2006/7/EC. Treatment with melamine also reduces water network consumption and sewer discharge by successive purges that eventually will become unnecessary. Therefore, this proposed method is environmentally and economically beneficial
    corecore